Publications

For the most up-to-date list of publications and citation metrics, check out our Google Scholar.

2023

    link Mercado, RocĆ­o et al. (2023) "Data sharing in chemistry: lessons learned and a case for mandating structured reaction data." J. Chem. Inf. Model. ASAP.

2022

    link Nori, Divya et al. (2022) "De novo PROTAC design using graph-based deep generative models." NeurIPS 2022 AI4Science Workshop.
    link Romeo Atance, Sara et al. (2022) "De novo drug design using reinforcement learning with graph-based deep generative models." J. Chem. Inf. Model. 62(20), 4863–4872.

2021

    link Gao, Wenhao et al. (2022) "Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design." ICLR 2022.
    link Viguera Diez, Juan et al. (2021) "A transferable Boltzmann generator for small-molecule conformers." ELLIS ML4Molecules.
    link Mercado, RocĆ­o et al. (2021) "Exploring graph traversal algorithms in graph-based molecular generation." J. Chem. Inf. Model.
    link Gao, Wenhao et al. (2021) "Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design." arXiv.
    link Romeo Atance, Sara et al. (2021) "De novo drug design using reinforcement learning with graph-based deep generative models." ChemRxiv.
    link Mercado, RocĆ­o et al. (2021) "Exploring graph traversal algorithms in graph-based molecular generation." ChemRxiv.
    link Zhang, Jie et al. (2021). "Comparative study of deep generative models on chemical space coverage." J. Chem. Inf. Model. 61, 6, 2572–2581.

2020

    link Mercado, RocĆ­o et al. (2020). "Practical notes on building molecular graph generative models." Applied AI Letters.
    link Mercado, RocĆ­o et al. (2020). "Graph networks for molecular design." Mach. Learn.: Sci. Technol.
    link Zhang, Jie et al. (2020). "Comparative study of deep generative models on chemical space coverage." ChemRxiv.
    link Mercado, RocĆ­o. (2020). "Using GraphINVENT to generate novel DRD2 actives." Cheminformania.
    link David, Laurianne et al. (2020). "Molecular representations in AI-driven drug discovery: a review and practical guide." J. Cheminf. 12(56).
    link Mercado, RocĆ­o et al. (2020). "Practical notes on building molecular graph generative models." ChemRxiv.
    link Mercado, RocĆ­o et al. (2020). "Graph networks for molecular design." ChemRxiv.

2019

    link Witherspoon, Velencia J. et al. (2019). "Combined nuclear magnetic resonance and molecular dynamics study of methane adsorption in M2(dobdc) metal–organic frameworks." J. Phys. Chem. C. 123(19). 12286-12295.

2018

    link Braun, Efrem et al. (2018). "Generating carbon schwarzites via zeolite-templating." PNAS. 115(35). E8116-E8124.
    link Mercado, RocĆ­o et al. (2018). "In silico design of 2D and 3D covalent organic frameworks for methane storage applications." Chem. Mater. 30(15). 5069-5086.
    link Forse, Alexander C. et al. (2018). "Unexpected diffusion anisotropy of carbon dioxide in the metal–organic framework Zn2(dobpdc)." J. Am. Chem. Soc. 140(5). 1663-1673.

2016

    link Mercado, RocĆ­o et al. (2016). "Force field development from periodic density functional theory calculations for gas separation applications using metal–organic frameworks." J. Phys. Chem. C. 120(23). 12590-12604.

2015

    link Xiang, Zhonghua et al. (2015). "Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture." J. Am. Chem. Soc. 137(41). 13301-13307.
    link Simon, Cory M. et al. (2015). "Computer-aided search for materials to store natural gas for vehicles." Front. Young Minds. 3-11.
    link Simon, Cory M. et al. (2015). "What are the best materials to separate a xenon/krypton mixture?" Chem. Mater. 27(12). 4459-4475.
    link Simon, Cory M. et al. (2015). "The materials genome in action: identifying the performance limits for methane storage." Energy Environ. Sci. 8. 1190-1199.